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An oscillating flow over a sandy beach can initiate and enhance the formation of bed 
ripples, with crests perpendicular to the direction of the ambient oscillation. Under 
certain circumstances, bridges may develop to span adjacent ripple crests, resulting 
in a brick pattern. It has been suggested that the onset of this transition is due to a 
three-dimensional centrifugal instability of an otherwise two-dimensional flow over 
periodic long-crested ripples. Here we analyse theoretically such an instability by 
assuming that the ripples are rigid and smooth. Two complementary cases are 
studied. We first consider a weak ambient oscillation over ripples of finite slope in 
Case (i). The three-dimensional disturbance is found to be localized in a small region 
either along the crests or along the troughs. In  Case (ii) we analyse finite oscillations 
over ripples of mild slope. The region influenced by the instability is now comparable 
with a ripple wavelength and the unstable disturbance along adjacent ripples may 
interact with each other. Four types of harmonic and subharmonic instabilities are 
found. The associated steady streaming close to the ripple surface shows various 
tendencies of possible sand accumulations, some of which appear to be qualitatively 
relevant to the initiation of brick-patterned ripples. 

1. Introduction 
When water waves travel over a sandy beach, the oscillatory flow close to the bed 

interacts with sand particles and often enhances the formation of ripples. I n  water 
of depth O(2-10 m), the typical scale of these ripples is of O(10 em) whereas the 
surface wavelength is of O(lCL100 m). Therefore for the dynamics over the ripples, 
the effects of the free surface and breaking can be quite negligible except in the swash 
and surf zones, and the ambient forcing is essentially a pure oscillatory flow. Bagnold 
(1946) was the first to  investigate this mechanism experimentally, by oscillating at  
various amplitudes a section of sand bed in still water. When the relative speed 
exceeds a critical value at  which sand particles begin to move along the bed, rolling- 
grain ripples are first formed with crests perpendicular to the direction of the 
ambient flow. The slope of these ripples is so small that the flow does not separate 
behind the crests. If the water speed exceeds about twice the critical speed, vortex 
ripples will appear instead, which are steep enough to induce vortices behind the 
crests. Vortex ripples can also form a t  a lower water speed from any obstacle 
protruding above the initially flat sand surface. When the oscillation amplitude A is 
reduced to about one-sixth of the ripple wavelength A these originally two- 
dimensional vortex ripples are transformed to a brick-like pattern. More thorough 
investigations of the formation of ripples including those of brick pattern have been 
conducted by Sleath & Ellis (1978). They oscillated a tray with an initially uniform 
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layer of sediment in a tank of still water, and measured the bed geometry when it 
reached an equilibrium state. Three kinds of particles were used and different 
oscillation amplitudes and frequencies were examined. Based on thcse experiments, 
Sleath (1984) has suggested that brick-patterned ripples occur when the orbital 
amplitude A is less than $A,, where A, is the maximum wavelength of the two- 
dimensional vortex ripples for a given oscillation frequency and sand properties. By 
assuming that the three-dimensional ripples are already present, he has further 
suggested that horseshoe vortices may form between adjacent bridges in the lee of 
the transverse crests, and tend to move sand particles towards the bridges as well as 
towards the transverse crests, thereby enhancing further growth of the brick pattern. 
While this mechanism may be relevant to the later stage of growth toward 
equilibrium, i t  does not explain the initial appearance of such three-dimensional 
topography which is most likely started by some instability mechanism. 

The simplest instability problem of an oscillatory flow is the two-dimensional case 
above a flat surface. Kerczek & Davis (1974) have given a linearized analysis of the 
two-dimensional instability of the oscillatory Stokes layer in a fluid of finite but large 
depth h between two parallel plates, and predicted absolute stability for Re = 
1/2Aw&/v < 800 if p = h/1/26 = 8 (where 8 = ( v /o ) :  is the viscous boundary-layer 
thickness, v is the viscosity of water, and w is the angular frequency). On the other 
hand, experiments by Li (1954) for p > 175 suggest that thc transition to turbulence 
occurs around Re x 566, while experiments by Sergeev (1966) for p > 3.5 give a lower 
threshold, Re x 495. The instability of a viscous fluid on an oscillating plate with a 
free surface without waves in the basic state has been investigated by Yih (1968) for 
0.1 < p < 10. An extensive survey of the linear two-dimensional instability of time- 
periodic flows, including unidirectional flow (oscillation plus a current) and centrifugal 
instability between concentric cylinders, has been given by Davis ( 1976). 

Developments on the instability of external oscillatory flows around a curved 
surface are relatively recent. In  particular, Honji (1981) oscillated transversely a 
circular cylinder of radius R in still water, and visualized the flow around the cylinder 
by using the smoke of metallic compounds. When the oscillation amplitude A 
exceeds a certain threshold for a given frequency, smoke streaks are formed at  
regular spacings along the cylinder. In  every oscillation mushroom-shaped vortices 
are first shed from the cylinder surface, at the same spacing, along the crowns, i.e. 
the two lines where the ambient fluid velocity is maximum. These vortices are then 
convected in the direction of oscillation and help to form the equally spaced streaks. 
This three-dimensional structure disappears when A is beyond a second threshold, 
whereupon the flow becomes turbulent. Honji plotted these two thresholds as curves 
of AIR versus the ‘Stokes number’ (8t = (217~) (R /6 )2 ) ,  for the range of 70 < St < 
700. This spanwise instability was later theoretically explained by Hall (1984). 
Assuming that A / R  and &/A are both small but the Taylor number T - A2/RS is of 
order unity, he has shown that an instability of centrifugal type can occur when 1’ 
exceeds a certain threshold. The theoretical value of this threshold is found to be in 
good agreement with Honji’s experiment. Physically, this instability takes place 
inside the thin viscous boundary layer and is localized near the point where the 
ambient velocity is maximum. Hall’s theory can be generalized for an oscillatory flow 
over other convex surfaces; the threshold of instability is always governed by the 
local Taylor number TL - At /R ,6 ,  where A ,  is the local amplitude of the oscillation, 
and R ,  is the local radius of curvature. In  addition, Hall extended the theory to a 
higher order in 6/R by accounting for nonlinear effects, and obtained the spatial 
dependence of the unstable mode amplitude along the circumference of the cylinder. 
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In  an experimental study of the forces on a circular cylinder of smooth or rough 
surface in a viscous oscillatory flow, Sarpkaya (1986) also observed Honji’s 
instability for a wider range of Stokes number, and confirmed Hall’s theoretical 
prediction up to St < 5500. 

In  acoustics, Thompson (1987) has investigated theoretically sound waves in a 
two-dimensional waveguide with rigid wavy walls. For large H I S ,  where H is the 
distance between the walls, he has shown that a similar mechanism of centrigugal 
instability may take place also. 

Direct evidence of the relevance of centrifugal instability to the formation of brick- 
like ripples was first found in the exploratory experiments by Matsunaga & Honji 
(1980) who used a periodic array of parallel half-circular cylinders attached on a flat 
plate. In the first experiment this two-dimensional ripple model was oscillated in still 
water with a relatively small amplitude (a = A/h  = 0.28). Regularly spaced streaks 
were observed along the crests as in the case of a single cylinder. The positions of 
streaks on adjacent cylinders were found to be out of phase by half the streak 
intervals. In  the second experiment, an array of half-cylinders was placed on the 
bottom of a water tunnel, and glass beads were spread between the crests. When 
water was forced to oscillate with a large amplitude (a = 0.60), the glass beads began 
to drift in the troughs between the cylinders, and finally formed brick-patterned 
accumulations. These observations clearly show that the two-dimensional flow over 
ripples can be unstable to three-dimensional disturbances, and suggest that the 
unstable mode can be subharmonic. The observed subharmonic structure also 
indicates that the disturbance along one ripple is not localized, but interacts with 
those along adjacent ripples. This is quite different from the case of a single cylinder, 
where the disturbance is confined in a narrow region around the two crowns of the 
cylinder. 

In this paper we present a quantitative theory of centrifugal instability in a two- 
dimensional laminar oscillatory flow over periodic rigid ripples, with a view to  
examining its possible relevance to the initiation of brick-pattern sandy ripples. Many 
theoretical papers on the two-dimensional basic flows exist. First among these is the 
work of Lyne (1971) who gave a perturbation analysis for small a/& (a  is the ripple 
amplitude) suitable for high viscosity or low frequency. He obtained not only the 
Stokes layer a t  the first order, but also the induced streaming a t  the next order. 
Extensions along the same lines have been obtained by Kaneko & Honji (1979) and 
Vittori (1989). The present authors have recently examined a broad range of a/& 
including a/& 2 O(1) (Hara & Mei 1990). Specifically, we considered two cases with 
different small parameters: Case (i) weak oscillations over ripples of finite slope: 
a = A / h  < 1 but E = a / h  = O(1); Case (ii) moderate oscillations over very gentle 
ripples: E < 1 but finite a. In both cases viscous effects and convective inertia are 
important within a rather thick layer of O(S/a) and O(S/c:), respectively, above the 
ripple surface. Nevertheless, the Stokes layer is still preserved a t  the first order near 
the ripple surface where the instantaneous acceleration balances the viscous stress. 
In  this paper we focus on the instability within the Stokes layer for these two cases. 
In Case (i) the disturbance is localized in a small region along one ripple, and the 
analysis closely follows that by Hall. The threshold of the instability is given in terms 
of the local Taylor number. In contrast to a circular cylinder, however, the 
instability may also occur along the troughs where the radius of curvature is 
negative. 

Our principal results are for Case (ii) where the oscillation amplitude is finite but 
the ripple slope is so small that there is no separation in the basic flow. The region 
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influenced by the instability is now comparable with a ripple wavelength and the 
disturbance along one ripple may interact with those along adjacent ripples. The 
unstable flow is either harmonic (periodic within one wavelength of ripples) or 
subharmonic (periodic within twice the wavelength of ripples) depending on the 
mode of instability. The associated steady streaming along the ripple surface shows 
a tendency that would accumulate sand particles in various patterns, including one 
suggesting the initiation of the brick-patterned ripples. The consistency between the 
results in Case (i) and Case (ii) is shown. Finally, the experiments with rigid cylinders 
by Matsunaga & Honji (1980), and those with sand ripples by Sleath & Ellis (1978) 
are discussed. Since in these experiments vortex shedding is likely to be present in 
the basic flow, only qualitative comparisons can be made, which nevertheless suggest 
that centrifugal instability can be a part of the mechanism of brick-like ripples. 
Satisfactory confirmation awaits extension of the theory and the experiments. 

2. Equations in curvilinear coordinates 
We consider the flow of an incompressible viscous fluid above a periodically rippled 

surface which is rigid and smooth. Referring to  figure 1, the ambient fluid oscillates 
in the x-direction transverse to the ripple crests. As a reference, we first define the 
usual rectilinear coordinates with y pointing vertically upwards, x normal and z 
parallel to the ripple crests, as shown in figure 1. The governing equations will 
however be written in terms of the orthogonal coordinates E and q which are related 
to 2 and y by the conformal transformation (Benjamin 1959; Lyne 1971): 

where a is a measure of the amplitude and h is the wavelength of the ripples. In the 
E,q, z system, the ripple surface is given by q = 0;  the fluid above a ripple period in 
the (2, y)-plane maps onto the rectangular semi-infinite strip 7 > 0 , O  < 6,’A < 1. The 
Jacobian of transformation is 

J = 1-2 (2:) - exp ( -- 2:) cos-+ 2;E (2:)’ ~ exp ( -- 4 3  . 

We define (u ,u ,w)  to be the velocity components in ( [ , q , z )  directions. Let us 
introduce the following normalization which is appropriate for the Stokes boundary 
layer : 

p‘ = - 
p A d h  ’ 

(2.3) * I  U U W 
u / = -  u f = p  WI = ~ 

Aw ’ Aw&/h ’ Aw6,’h ’ 

z zf = - 
h 6’ 6’ 

t’ = wt ,  t / E  =- )  f = 2  

where 6 = ( v / w ) i  is the Stokes boundary-layer thickness. A and o are the amplitude 
and the frequency of the ambient oscillation. Note that the scales in the z-direction 
are chosen to be the same as in the y-direction, as suggested by the work of Hall. For 



Centrifugal instability of an oscillatory flow over periodic ripples 5 

Z 

I 

Z 

FIGURE 1. Definitions of (z, y, z )  and (6 ,  v ,  Z) coordinate systems. 

brevity we shall also omit the primes from here on. From their forms in the general 
orthogonal curvilinear system (see e.g. Batchelor 1967, p. 598 ff), the normalized 
Navier-Stokes equations in the 5-, 7- and z-coordinates can be deduced : 
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-+a aw s--+a--+w&) i aw 1 aw 
at ( J i a g  Jiar a2 

while the dimensionless Jacobian is 

J = 1 - 47ce cos (2xC) e --8rmg + 47~'~' e-4nnq. (2 .8)  

Use has been made of the fact that  h, = h, = J: ,h,  = 1 where (h l ,  h, ,h,)  are the 
standard scale factors in (6, r ,  2)-directions. Three dimensionless parameters appear 
in these equations: e = a/A = ripple slope; 01 = A/A = amplitude of ambient 
oscillations relative to the ripple wavelength ; r = & / A  = boundary-layer thickness 
relative to the ripple wavelength. We only consider small viscosity so that (T 4 1.  

In  the case of a single cylinder in a weakly oscillating flow, Hall found that the 
instability occurs when the Taylor number 

T = O(A2/6R),  (2.9) 

which measures the ratio of the centrifugal force to the viscous stress, exceeds a 
certain critical value of order unity, with the auxiliary conditions that 

* 1. 
A S  
R - A  (2.10) 

This Taylor number has local maxima when the local inviscid velocity is the greatest, 
i.e. a t  two crowns of the cylinder along the diameter normal to the ambient 
oscillations, and the unstable disturbances are localized near these crowns. Now for 
periodic ripples, described by (2.1) with 7 = 0, the maximum local radius of the 
curvature is of the order R = O(A2/a) .  Thus the Taylor number can be defined as 

so that the instability threshold is expected to be 

ex2 - = 0 ( 1 ) ,  
U 

with the auxiliarv conditions that 

(2.11) 

(2.12) 

(2.13) 

We shall examine two cases which satisfy (2.12) and (2.13) : 

Case (i) a 4 1, 6 = 0(1), fT = O(a'), 

Case (ii) a = 0 ( 1 ) ,  (T = O(E) * 1. 

In  Case (i), the oscillation amplitude is much smaller than the ripple wavelength; the 
instability is found locally either around the crests or around the troughs. The 
analysis, which is close to that of Hall for a cylinder, will only be sketched. In  Case 
(ii), the oscillation amplitude is still smaller than the radius of curvature, but is 
comparable to the ripple wavelength. The disturbances at  adjacent crests/troughs 
start to interact with each other. As a result the physical feature is now drastically 
different from that in Case (i) or in the case of a cylinder. 
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3. Two-dimensional basic flow 
Before three-dimensional unstable disturbances are introduced, the basic flow is 

assumed to be two-dimensional in the plane of g and 7 with velocity components 
denoted by ( U ,  V ) .  It is convenient to introduce the stream function $ defined by 

which automatically satisfies (2.4). Then the two-dimensional Navier-Stokes 
equations can be combined to  give the vorticity equation 

where 

is a distorted Laplacian. The boundary conditions are 

(3.3) 

(3.4a, b )  

(3.5a, b )  

I n  addition, $ is periodic in 6 with the period equal to  unity. 
Although the parameters are different, the method of perturbation can be used, as 

in Lyne (1971), to obtain the leading-order approximation, which is formally the 
same as the Stokes solution. In  particular, for Case (i), CT = O(a2) << 1, we introduce 
a perturbation series in powers of a, 

$ = $o+a$l+... . (3.6) 

we expand similarly J = J +  O(a2) ,  (3.7) 

J = 1 - 4ne cos (25c5) + 4n22. (3.8) where 

To the leading order, O(ao),  (3.2) and (3.4) give 

$ o = - = o ,  all.0 r/=o. (3.10) 
a7 

At infinity only ( 3 . 5 b )  can be satisfied: 

(3.11) 

In  this boundary-value problem the coordinate E is only a parameter. The solution 
is simply that of Stokes boundary layer over a plane: 

(3.12) 
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where * denotes the complex-conjugate of the term preceding and 

To this order, O(ao) ,  the corresponding velocity components are 

(3.13) 

(3.14) 

(3.15) 

Since for later analysis of instabilities we shall only consider leading approximations 
for a < 1, (3.14) is sufficiently accurate, while (3.15) is never needed. 

For Case (ii), 01 = 0(1), E = O ( a )  4 1, the ripple amplitude is comparable with the 
Stokes-layer thickness. The approximate solution can be sought in powers of E .  To the 
leading order, O(so) ,  we have 

-1-i J =  1+0(€), 7 = y+O(e)=- d2 +O(+  

and the solution is simply that of Stokes in the curvilinear coordinates 

U = $ eit( 1 - ey?) + * + O ( E ) ,  

v = O(E). 

(3.16) 

(3.17) 

(3.18) 

This is so because the ripple slope is so small that convective inertia is negligible. A 
more detailed higher-order analysis of the two dimensional oscillatory flow over 
ripples can be found in Hara & Mei (1990). We recall that in the limit of a flat plate 
( E  = ka- tO) ,  the Stokes solution is exact in principle for all a, though in reality it is 
limited by transition to turbulence a t  some experimentally observed threshold Re = 
2/2A/8  = 42a /c  z 500. For small but finite e the threshold of Re must be reduced, 
though it can be expected to be still large for small enough E .  Note also that when 
a cylinder of radius R oscillates in calm water, the Stokes boundary-layer flow is 
formed without separation around the cylinder a t  the leading order if AIR 4 1. In 
our case, the local radius of curvature is R - h2/a which is also much larger than the 
oscillation amplitude A since AIR - ae < 1 ; we therefore expect the Stokes solution 
to hold a t  the leading order in E as long as ae is sufficiently small. 

4. Order estimates for three-dimensional disturbances 

two-dimensional basic flow found in $3. We substitute 
Let u', v', w' and p' be the three-dimensional disturbances superimposed on the 

u = U+u', v = V + V ' ,  w = w', p = P+p' (4.1) 

into (2.4)-(2.7) with u', v', wf < U ,  V and p' e P. After linearizing, the equations 
governing the disturbances read 



Consider first the vertical momentum (4.4). The leading inertia term is v; which is 
of the same order as the leading viscous stress terms on the right. On the left the 
centrifugal force (the last term) can be of comparable importance if 

upon using (2.8), hence (4.7) 

Now consider the tangential momentum (4.3). Among the convective inertia terms 
the largest is the fourth 

which is of the order (4.9) 

when (4.7) is satisfied. Therefore the centrifugal force plays an important role in both 
momentum equations of the disturbance if 

€az 
- = O(1) 
U 

as has been found by Hall. It follows from (4.7) that 

O(u’) = O(av’). 

(4.10) 

(4.11) 

From the continuity we must have w‘ = O(v’). Thus for Case (i), u‘ = O(av’) 4 v’ and 
w‘ = O(v’) while for Case (ii), u‘ - v’ - w‘. I n  (4.4) and (4.5), the pressure gradient is 
balanced with inertia and viscous terms by setting p’ = O(g2v‘) - 0((r2w’) in both 
cases. 

We now study the two cases separately. 
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5. Case (i). Weak ambient oscillations and finite ripple slope: cc < 1 ,  CT = 
O(a2) 4 1, E = O( 1) .  Linearized equations for three-dimensional disturbances 

In  view of (4.11), we now rescale u', v', w' and p' by changing them as follows: 

u' +ad, VI  -+ d, w' + w', p' + CPp' (5.1) 

and keep only the O(cco) terms in the linearized equations. 
It is now convenient to introduce the final transformation: 

1 

(5.2) 
6= STJ, 6 = JSU', jj = vf, & = w', jj =p' 

[ = &  +=A/, i = x ,  i = t .  

Note that the derivatives are transformed according to  

a , a  a a a a 
ar ar az az"' at at 
- - + J F T ,  -+- -+-. 

The linearized equations (4.2)-(4.5) for the disturbance become 

a4 az; -+- = 0, a+ a; 
az; a22i a22i a6, 
7---- +,v = 0, 
at ax"2 a;2 ar 

az; att i  a$ a 2 4  ---+:+- = 0, 
at a42 aZ arjaz" 

T[cos ( 2 7 4  - 27t~] at2 [cos (274  - 2xe]  =- 
3 (T 11 - 4 7 ~ ~ ~ 0 ~ ( 2 7 ~ ~ ) + 4 7 ~ ~ 6 ~ ] ~  

where TL = 

The boundary conditions are 
A A A  u = v = w =  1; = 0, + = 0,m. 

0 = ieic(1- ~ Y Q )  + *, 
The basic tangential flow (3.14) is now simply 

-1- i  
y = ~. 

d2 

(5 .3)  

(5.4) 

(5.5) 

(5.7) 

(5.9) 

(5.10) 

Equations (5.4)-(5.9) constitute a homogeneous boundary-value problem similar to 
that studied by Hall for a circular cylinder. 

Note from (3.14) that  the local oscillation amplitude just outside the Stokes 
boundary layer is 

A ,  = AJ-i (5.11) 

and that the local radius of curvature of the ripple a t  is 

(5.12) 

(see Appendix A). Hence (5.13) 
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is the local Taylor number. At the leading order in a the linearized disturbance 
depends on f ;  only parametrically through TL. It is only this detail that is different 
from the circular cylinder case of Hall. 

The remaining analysis is carried out as in Hall by first eliminating Ij, and ji after 
cross-differentiation. We then specify the dependence along the ripple to be 
sinusoidal in z with wavenumber E .  Because the coefficients depend on time 
sinusoidally through 0 we consider the solution of the form: 

(5.14) 

where 5 corresponds to  the rate of growth, or decay. The corresponding expression for 
1.6 is similar except cos kz" is replaced by sin kz". The result is an eigenvalue problem for 
a linear system of coupled ordinary differential equations in $. For neutral instability 
(s = 0) or prescribed rate of growth we fix the wavenumber k and solve for the 
eigenfunctions and the eigenvalue TL. The computational procedure is essentially 
that of Hall. Since its extension is described in Appendix B for Case (ii) it is omitted 
here. 

Although we originally assumed that the ripple slope is finite ( E  = O(l ) ) ,  the 
present theory should be valid in the limit of e < 1 as long as the Taylor number 
remains of O( 1 ) .  This means that the results from the small+ limit of this theory for 
small a should agree with the small-a limit of the theory for small e. This will be 
confirmed later. 

6. Case (i). Results and discussion 
The controlling paramete: of the problem is the local Taylor number, defined by 

(5.8) which is a fun5tion off;, 8 and a2/a. For fixed a2/(r, the typical dependence of 
TL on the location f [  and the ripple slope e is plotted in figure 2. When e < 1 / 8 ~  x 
0.040, TL varies monotonically between the positive extremum 

a t  the crest, to the negative extremum 

at  the trough. For e 2 1 / 8 ~  the negative extremum occurs somewhere between the 
trough and the crest. As will be shown shortly, the absolute value of the local Taylor 
number must exceed a certain threshold before instability becomes possible a t  any 
wavenumber. Thus instability must commence at  the location where TL is either the 
positive maximum or the negative minimum. This is the main distinction from the 
case of a circular cylinder studied by Hall, where TL is always positive. In figure 3 we 
plot the relation between TL (both positive and negative) and k for various growth 
rates 5. The curves for s = 0 correspond to neutral instability and are concave away 
from the E-axis. Curves with positive growth rates are inside the neutral instability 
curves. In particular, the smallest positive threshold is at TL.= 0.430 and k = 0.36 
and the numerically smallest negative threshold is TL = -0.255 and k = 0.31. The 
positive threshold is identical to that obtained by Hall (1984) for a circular cylinder. 
Since, for sufficiently large e ,  the absolute value of the positive maximum of TL is 
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FIGURE 2. Local Taylor number TL as a function of [ for various ripple slopes E .  
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FIGURE 3. Relationship between local Taylor number TL and disturbance wavelength k for 
various growth rates 8. 
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much larger than that of the negative minimum (cf. figure 2) ; instability should occur 
first at the crest as a 2 / m  increases. This is of course because the crest has a sharper 
curvature than the trough for all but very small E. On the other hand, for very small 
e the curvatures at the crests and the troughs become equal. Instability can occur a t  
the trough first before the crest. The demarcation value of e for the same u 2 / v  is 
found by equating a2/la in (6.1) and (6.2), 

i.e. 8 = 0.0103 and az/a = 31.7. Thus for E < 0.0103 instability first ocurs at the 
trough when a2/g increases past 31 -7. For E > 0.0103, instability always occurs a t  the 
crest first. In  the limit of e+O, the threshold of instability becomes simply 

I €a2 r = - = 0.255 
(T for the trough mode, and 
€a2 T = - = 0.430 
0- 

for the crest mode. 
As in the instability along a circular cylinder studied by Hall, the disturbance is 

localized in a small regiqn around the crests or the troughs, whose width in 6- 
direction is of O(ai). The 6-dependence of this unstable mode may be obtained from 
the higher-order perturbation equations in a. Since the results do not give any new 
features and the nonlinear analysis is very similar to Hall's, they are not presented 
here. Readers may refer to Hara (1990) for further information. 

7. Case (ii). Moderately strong ambient oscillations and gentle ripples: 
a = O(1), 

For small B and (T = O(E), the ripple amplitude is comparable with the Stokes-layer 
thickness. It is still necessary to employ the curvilinear coordinates 5 and q. As shown 
in (3.16)-(3.18), the Jacobian of transformation is now approximately unity and the 
basic two-dimensional flow is formally that of a Stokes boundary layer over a flat 
plate in the (6,  q)-plane. 

In  the linearized equations (4.2)-(4.5), we now set e = O(cr) and ca2/r  = O( 1) and 
rescale the pressure by changing p' to v2p'. To the leading order, O(eo) ,  the 

= O(E)  + I. Equations for three-dimensional disturbances 

approximate equations are 
a%' a v T  awl 
a6 aq aZ -+-+- = 0, 

with the boundary conditions 

u! = v' = w' = 0, q = 0, co. (7.5) 
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After eliminating w‘ and p‘ by cross-differentiation, we seek disturbances which are - ~. 

sinusoidal in z ,  

where k is the wavenumber along the ripple. The corresponding form for w’ is w’ = 
&sin kz. Let us further introduce a coordinate system oscillating with the ambient 
fluid : - 

U’ = Zi cos kz ,  V’ = B cos kz ,  (7.6) 

6 = 6-asint (7.7) 

so that 
a a  a a a  
at at a[’ a< a[ -+---acost- -+-. 

The coordinates 7 and z remain unchanged. The governing equations for 6 and v” are 
then found to be 

a a 2  (5 - k2 - $) (v - XI) 6 - ( U -  cos t)  a 

a21J T 
+-a-- 8x2Ucos [2x((+ a sin t ) ]  - k2Zi = 0, (7.9) ar2 3% 0. 

with the boundary 

az; au 
a% ar 

($- k 2  - $) Zi - ( U -  cos t )  a- -- aB = 0, 

conditions 

(7.10) 

where, in view of (3.17),  

With the transformation (7.7) the coefficient U(7)  -cos t vanishes a t  7 - cc along 
with aU/aq and a2U/ay2.  The asymptotic equations for the time harmonics of 4 are 
uncoupled and can be solved analytically as shown in Appendix B. The variable 
coefficient appearing in (7.9) can be expanded using the well-known identities 
(Abramowitz & Stegun 1965, p. 361):  

cos (2xa sin t )  = C eint Jn(2xa), 
%=*even 

eint 

sin (2xasint) = -~,(27ca), 
n=kodd 

so that 

(7.13) 

(7.14) 

(7.15) 
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We now seek the solution in the following form : 

(7.16) 

where s is real, and represents the rate of growth or decay. After D and v" are 
calculated, 6 can be readily calculated by using (7.1).  For reality of the solution we 
require that 

(7.17) 

Since the ripple period is unity, an even m corresponds to  harmonic disturbance while 
an odd m corresponds to subharmonic disturbances. Also, in contrast to  Case (i) for 
small a, the leading-order solution here depends explicitly on 6. Substituing (7.16) 
into (7.9) and sorting out the harmonics we obtain for the coefficient of the typical 
term exp i(nt + mnc) : 

m 

(7.18) 

Similarly, substituting (7.16) into (7.10) and sorting out the harmonics give 

+ h eYku,-l, +b* eY*%zv,+l,m = 0. (7.19) 
1 a 2  (@- k2-in-s u,m+~eY~aimnu,-l,m+~eY'qaim~u,+,,m 

The homogeneous boundary conditions for each harmonic are 

(7.20) 

Equations (7.18) and (7.19) form an infinite set of coupled ordinary differential 
equations for u,, and vnm, 

The numerical solution of this eigenvalue problem can be facilitated by noting first 
that the mth harmonic is coupled only with the (m+ 2)th and (m- 2)th harmonics. 
Therefore we can consider the following two cases separately : rn = even(harmonic) 
only and m = odd(subharmonic) only. 

- avnm - u,, = v,, - - -0 ,  y = o , o o .  
a? 

Let us take the complex-conjugate of (7.19) : 

k2 +in--s u ~ m - ~ e Y * ~ a i m ~ u ~ - l , m - ~ e ~ ~ a i m n u ~ , , , m  

+ h* eY*ttv:-l, + 5 eY%u,*+l, = 0, (7.2 1 ) 

1 a 2  

(p- 

and next replace n by -n in (7.19): 

+$yeY~av-,-l,m+~* eY*vav-n+l,m = 0. (7.22) 

~ - , , ~ + ~ e ~ ~ a i r n n u _ , - ~ , ~ + ~ e ~ * ~ u i m ~ u - , + ~ , ~  
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These two equations are of course identical except for the change of indices ; this leads 
to certain parity properties. Now if 

* 
Unm = U-n, m 

then the identity of (7.21) and (7.22) implies 

(7.23 a )  

* (7.24 a) On the other hand, if 
-Unm = U-n,m 

then 

When n = even, n f  1 = odd, (7.23a-e) can be expressed in a more compact form: 

u:m = ( - l ) n U - n , m ,  wn*m = ( - l ) n + l w - n , m ,  (7.25) 

while (7 .24~-e)  can be expressed as 

un*m = ( - l ) n + l U - n , m ,  W E m  = ( - l ) n w - n , m .  (7.26) 

On the other hand, when n = odd, n f  1 = even, (7.23) is equivalent to (7.26) while 
(7.24) is equivalent to (7.25). Therefore for either n = even or odd, (7.25) and (7.26) 
are two possibilities. The same conclusion can be reached from (7.18) by similar 
arguments. 

In  summary, we expect four distinct types of disturbances : 
Type I (subharmonic) : m = odd, with (7.26), 
Type I1 (subharmonic) : m = odd, with (7.25), 
Type I11 (harmonic) : m = even, with (7.26), 
Type IV (harmonic) : m = even, with (7.25). 
Let us examine the implications on the velocity components expressed by (7.17). 

For Type I we invoke (7.17) and (7.26) so that 

.li = { n=--00 m=+odd 
eint 2 (eimxcUnm +e-im~i~,,-m)}est 

= { 2 eint 2 [eimncu,, + e-imx" - l)n+lunm]} est (7.27) 
n=-m m-+odd - 

Since 

and 

we have 

[ - 1  = 2unm cos (mnk) for n = odd 

[ . ]  = 2iunm sin (rnxc) for n = even 
- 

zi = [ c eint 2 2cos (mnc)unm+ c eint c~ 2isin(mn6)unrn est. 

(7.28) 
n=+odd m-+odd n=+even m=+odd - 1  

n=+even m-+odd n=+odd m=+odd 1 
Similarly, 

V" = [ c eint c 2c0s(mn~)vnm+ 2 eint 2isin(mni)vnm est 

(7.29) 

for Type I. It is different from zi in the range of the first summation. 
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By similar reasoning, the velocity components for the other three types have the 

Type 11: 

zi = [ 

fj = [ 

following forms 

eint c 2cos(mlc5")un,+ eint c 2isin (mxf)un, est, 

(7.30) 
n= + even m=+odd n=+odd ,=+odd - 1  

1 c 2i sin (m&) v,, est. 

(7.31) 

eint x 2cos(mxi3vnm+ Z: eint 
n=+odd m-+odd n=+even m=+odd 

Thus Zi of Type I1 has the form of 6 of Type I and vice versa. 

4 = [ 
Type 111: 

1 
- 1  

- 1  
1 

eint x 2cos(2mn[)unm+ eint c 2isin (2mn[)un, est, 

(7.32) 
n=+odd m==O,l,Z,... ?%=+even m=0,1,2,  ... 

2i sin (2mx5) v,, est. 6 = [ eint 2cos(2mx~3v,,+ C eint 
n= +even m=O, 1,2 ,  . . . ?&=+odd m=O, 1,Z, ... 

(7.33) 

Type IV: 

c 2cos(2mxijunm+ eint c 2isin(2mlcg)un, est, 

(7.34) 

fj = [ eint c 2cos(2mn[)vnm+ C eint 2isin(2mx[)vnm e*t. 

(7.35) 

Thus 1 of Type IV has the same form as v" of Type I11 and vice versa. 
For neutral instability, s = 0, the eigenfunctions un,(q) and w,,(q) and the 

eigenvalue T must be solved from the boundary-value problem for given k .  The 
numerical procedure is described in Appendix B, and computations were performed 
on a Cray X-MP super computer. For a prescribed growth rate s > 0, the eigenvalue 
T is solved similarly for given k. In  the following section only the neutral instability 
will be discussed. The modal analysis of the form (7.16) suggests that the instability 
now spans over the entire ripple surface. Hence the eigenvalue T is of global 
significance in contrast to the local Taylor number TL in Case (i). 

= [ c eint 
n=+even m = 0 , 1 , ~ ,  ... n=fodd  m-0 ,1 ,29 . . .  

n-*odd m-O,l,Z, ... n=+even m=0,1 ,2 ,  ... 

8. Case (ii). Neutral instability curves and mean flow patterns 
In  figures 4(a)  to 4 ( d )  we plot for a: = 1/2n, 1/n, 3/2x, 2/71: x 0.16,0.32,0.48,0.64 

the neutral instability curves of T us. k .  For each of the four types of disturbances, the 
number of curves increases with the Taylor number T ,  corresponding to the 
proliferation of modes. For identification we assign the modal number in the order 
of increasing threshold Taylor number. I n  some cases two different types share 
essentially the same neutral curve. Since they have different flow structures, two 
modal numbers are assigned. The qualitative features of the results for non-zero 
growth rates are similar to those in Case (i), and are not presented here. 
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Each mode is distinguished by its flow pattern which is in general periodic in time. 
For simplicity, we choose to  examine each mode by its time-averaged tangential 
velocity vectors near the ripple surface (small q > 0). These time averages correspond 
physically to the Eulerian induced streaming which should be responsible for the 
drifting of small particles near the ripple surface, and are obtained by first 
transforming from the oscillating to the stationary ( t , ~ ,  2)-coordinates. For example, 
for Type I we first calculate u' by expanding (7.28) with the help of (7.15): 

u' = cosE2 C 2 cos [mn(&-asin t ) ]  unm 

+ 2 2i sin [mn(E - 01 sin t ) ]  unm 

{ n = Z c l d  eint m=+odd 

I eint 
n = i e v e n  m=+odd 

00 

= c o s ~ z {  eint C C e-'it4(mna) [eimnc+ ( -  l)je-imnc 1 u n m  
n=+odd m=+oddj=-cc 

m 
+ C eint 2 C e-MJ mna) Leimat- ( - 1)i e-imn5] A 

n= + even m=+odd i=-m 
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3 I 
Mode 1 (Type I) 

(4 

1.6 1111111111111 
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Mode 1 (Type 11) 

(4 1.8 

1.6 
0 0.2 0.4 0.6 0.8 1.0 1.2 

k 

FIGURE 4. Relationship between Taylor number T and disturbance wavelength k for neutral 
instability ( s  = 0). -, Type I; - - - - -, Type 11; --, Type 111; ---, Type IV. (a) a = 1/2n % 

0.16, ( b )  01 = l /n  x 0.32, (c) t ~ .  = 3/2n % 0.48, ( d )  u 2 / ~  % 0.64. 

r m 

= coskzL C eint c 2 cos(mx5) c J l ( m x a ) ~ , + ~ , ~  

+ x eiSt 2isin(mzc) x J j ( m ~ a ) u , + ~ , ~  , 

n=kocid m-+odd I=-m 

(8.1) 1 m 

n = i e v e n  m=+odd j=-m 

where u,, for each n and m is obtained numerically. The time average corresponds 
to n = 0 in the second term: 

03 - 
u’ = cos kz Bisin (m@) c 4(mza) u ~ , ~ .  (8.2) 

m=+odd j=-m 

Therefore 2 is odd around the crests (6 = 0, + 1 ,  )2, ...), and even around the 
troughs ( E  = )i, )$, ...). The velocity component 3 can be calculated similarly. To 
help understand the physical distinctions amongthe four different types defined in 
$7,  we summarize the odd/even properties of u‘ and 2 around the crests or the 
troughs in table 1.  

Near the ripple surface 11 is small, and 2 and 3 are dominated by 
- 

- - 

u’(7) = - q+ ..., w’(7) = - T j +  ... . c I*-o : ll_o 
Therefore we only plot the vectors with the components 

(8.3) 

as shown in the lower half of figure 5(u-k) for the minimum threshold T and 
corresponding wavenumber k on the neutral instability curves as indicated in the 
captions. We have further checked that the flow patterns remain qualitatively 
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FIGURE 5(a,b) .  For caption see p. 23. 

similar at other points along the same neutral curve. It is on this basis that each 
neutral instability curve is identified with a mode. Since the absolute magnitude for 
the eigensolution is arbitrary in the linear theory, the lengths of tangential velocity 
vectors are normalized by the maximum in each plot, and hence represent the 
relative magnitude of the local mean velocity. Note that 6 and z in these figures have 
physical scales and k is the dimensionless wavenumber of the instability threshold. 

Also for small but finite 7,  the velocity divergence in the tangential plane can be 
used to indicate the tendency of sediment accumulation on the ripple surface. In  
particular, accumulation may be expected where the divergence is negative. By 
continuity this divergence is approximately 
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FIGURE 5(c-j). For caption see p. 23. 

Hence we plot the quantity 

a*? I 

on the upper half of figure 5(a-k) for the same thresholds as before. Positive 
divergence (implying scouring) is shown by x and negative divergence (implying 



FIGURE 5 (g-j). For caption see facing page. 

accumulation) by 0. The size of each symbol is proportional to the magnitude of the 
divergence and is normalized again by the maximum in each plot. 

As will be discussed in $9, the instability is confined either around the crests or 
around the troughs for small a. We therefore define the region of influence of the 
instability by setting as its boundaries where the magnitude of divergence decays to 
10% of its maximum. These regions are indicated by arrows above the plots of 
divergence, for a = 1/2x, l/x, and modes 1 and 2 of a = 3 1 2 ~ .  



FIGURE 5. Time-averaged tangential velocity field near t,he ripple surface (bottom figure), and its 
divergence in the tangential plane (top figure). The magnitudes of velocity and divergence are 
normalized by the maximum value in each plot. 0,  negative divergence; x , positive divergence. 
Arrows above the divergence plot indicate region of influence of instability. (a) u = 11271 x 0.16, 
k = 0.35, T = 0.337. (b )  a = 1/2n x 0.16, k = 0.35, T = 0.337. (c) a = 1/2n x 0.16, k = 0.41, T = 
0.447. ( d )  a = 1/2n x 0.16, k = 0.40, T = 0.447. ( e )  a = 1/2n x 0.16, k = 0.36, T = 0.533. ( f )  a = 
1/2n FZ 0.16, k = 0.36, T = 0.533. (9) u = l /n x 0.32, k = 0.37, T = 0.941. (h)  u = 31271 x 0.48, 
k = 0.41, T = 1.949. ( i )  a = 3/2n % 0.48, k = 0.41, T = 1.961. (j) a = 3/2n 0.48, k = 0.78, 
T = 2.38. ( k )  a = 2/71 x 0.64, k = 0.52, T = 2.06. 

FIGURE 6. Vertical profile of velocity u' a t  t = O , @ , $ , $  (solid lines), and its time average 
[dashed line), a t  .$ = 0.5, z = 0, for a = 1/2n % 0.16, mode 1 or 2, Type I. 
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To give a sample view of the vcrtical structure of the thrcc-dimensional 
disturbances we choose to plot in figurc 6 the horizontal velocity u’ a t  z = O,[ = $ 
(trough) for a = 1/2n x 0.16, mode 1 or 2, Type I. Referring to (8.1), the first term 
in the square bracket is zero a t  [ = $, and u‘ is periodic in time with a period x. 
Therefore we plot u’ as a function of 7 a t  t = 0, in, in, shown by solid lines, as well 
as the time average 2 shown by a dashed line. We now discuss these results for 
different a. 

9. Discussion of results 
a = 1/2x x 0.16 

This is a case of very weak ambient oscillations. Note from figure 4(a) that to the 
accuracy of our computation (the error is less than 0.5% in the eigenvalue T), two 
different types of unstable disturbances, one harmonic and one subharmonic, can 
share the same neutral stability curve. To understand this coincidence of two 
seemingly different solutions, we compare the flow patterns. From figure 5 ( a )  for 
Type I and 5 ( b )  for Type IV, corresponding to modes 1 and 2, we note first that the 
drift motion is highly localized along the ripple troughs, there being negligible 
motion along the crests. Therefore the motions along adjacent troughs should be 
effectively independent of one another, whether the unstable mode is harmonic or 
subharmonic. Furthermore, the flow patterns along each trough are virtually the 
same for both types, except for a phase shift of half a wavelength. Between adjacent 
crests, there appears a single circulation pattern whose direction changes alternately 
in the z-direction. Because of the absence of interference between adjacent troughs, 
the phase difference between neighbouring troughs is physically immaterial. In other 
words, whether the instability belongs to Type I or IV, the flow along each trough 
is the same. Therefore the coincidence of the neutral instability curves is the 
consequence of the independence of adjacent troughs and is not surprising. 

Consider the next higher modes, 3 and 4, where a subharmonic solution of Type I1 
and a harmonic solution of Type I11 share the same neutral stability curve, as shown 
in figure 4(a). Again the unstable disturbances are confined to the troughs (figure 5 c ,  
d ) .  Along each trough the flow pattern is much the same. The only distinction 
between the two types is also a phase shift by half a wavelength. The unstable regions 
are slightly broader and the flow within each periodic cell shows a double circulation 
pattern, in contrast to modes 1 and 2 .  

The first crest instability appears for modes 5 and 6 where Type I (subharmonic) 
and Type 111 (harmonic) still sharc a neutral stability curve. The streaming and 
divergence patterns clearly suggest that sand may accumulate in checkerboard 
(figure 6 e )  and rectangular patterns (figure 5f). 

Note that when the instability is confined around the troughs, the oddleven 
properties of 2 and 7 must be identical a t  the troughs between the two types 
sharing the same neutral curve. Referring to table 1, the sharing must be between 
either Types I and IV or between Types I1 and 111. Similarly for crest instability, 
possible sharing are Types I and I11 and Types I1 and IV. 

a = 1/x x 0.32 
Modes 1 and 2, 3 and 4, 5 and 6 of a = l /x  correspond to modes 1 and 2 ,  5 and 6, 

3 and 4 of a = 1/2x respectively, after examining their flow patterns. The features 
of the streaming and its divergence for a = 1/x are qualitatively similar to  those for 
a = 1/2x, although the unstable region is generally wider. We only show a sample case 
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of mode 3 or 4, Type I (subharmonic crest instability) in figure 5(g) .  The region of 
influence is almost twice as wide as the corresponding plot in figure 5(e) for a = 1/2n. 

a = 3/2n x 0.48 
Here the total displacement amplitude (2A) of the ambient oscillation is nearly 

equal to the ripple wavelength. The neutral instability curves in figure 4(c) are the 
most complex. For modes 1 and 2 the subharmonic (Type I) and harmonic (Type 111) 
disturbances still seem to share the same neutral curves. Both disturbances are 
unstable a t  the crest for smaller a. However, the region of instability is now the entire 
surface, and the flow is no longer confined to the crests (figure 5h,  i ) .  I n  other words, 
the disturbances along adjacent crests now interact with one another. Corre- 
spondingly there is a slight deviation of the two neutral curves. The same discussion 
holds for the trough instability modes 3 and 4 and modes 5 and 6. In  particular, the 
flow pattern of mode 5 ,  Type I in figure 5 ( j )  shows strong interaction between 
adjacent troughs and the intensities of disturbances near the crests and near the 
troughs are comparable. The resulting checkerboard accumulation pattern has a 
wavelength two-thirds of that of the ripples. 

a = 2/n % 0.64 
For such strong oscillations the neutral curves of different modes no longer 

overlap. The interaction between adjacent ripples is significant. Sample velocity and 
divergence plots are shown in figure 5 ( k )  for mode 1, Type 11. The accumulation 
pattern clearly indicates the formation of bridges between transverse crests, which 
might lead to brick-patterned ripples. 

Owing to  the high cost of computations, we did not pursue higher values of a. 
Since for a less than l /n  x 0.32, the instability is localized either along the troughs 

or the crests, the results should be close to those obtained in $6 for small a when 
e < 1. As a check of computational consistency, we plot in figure 7 the threshold values 
of T for a = 1/47c, 1/2n, 3/47c, 1/n x 0.08,0.16,0.24,0.32 from the finite-a theory. 
For a+O, the threshold Taylor number has been calculated as (6.4) and (6.5) in the 
limit of small E .  These plots can be smoothly interpolated by dashed lines for each 
mode. In  Case (i), we have further pursued a higher-order theory in a. The Taylor 
number is then expanded as T =  T,+aT,+..., 

where T,  is the leading-order solution (6.4) or (6.5), and has multiple eigenvalues. 
We have only calculated the lowest three values of TI for the trough mode and the 
lowest two values for the crest mode. These results are also shown by solid lines in 
figure 7. The consistency between the two theories (Cases (i) and (ii)) is evident. We 
have also determined the spatial variation of the unstable modes along 6 from higher- 
order theory for Case (i) (a 4 1).  The flow field so obtained has been used to compute 
the steady streaming field for a = 1/4a x 0.08, and is found to be quite consistent 
with that obtained from the finite-a theory. Since the details do not show further 
physical insight, the reader is referred to Hara (1990) for further information. 

So far no proper experimental results are available for direct comparison with our 
theory. Matsunaga & Honji (1980) conducted experiments for a vastly different 
geometry; one of them is cited here for a tentative comparison with our theory. In  
this experiment, an array of parallel half-circular cylinders (radius R = 0.70 em) were 
fixed on a flat plate. The spacing between the semicylinders was h = 2.5 cm. We use 
R/2A = 0.14 as an estimate for B ,  which is not at all small. This two-dimensional 
ripple array was oscillated in calm water with frequency f = 0.36 Hz and amplitude 



26 T .  Ham and C. C. Mei 

1 .o 

0.8 

0.6 

T 

0.4 

0.2 

'i I I 

/ 

p' // 
/ 

/ / 
/ / 

/ / 
I ' 

1 1 1 

0 0.1 0.2 0.3 0.4 

FIGURE 7. Threshold Taylor number T as a function of a. Solid lines are the results for Case ( i ) .  
Calculated values in Case (ii) are indicated by : 0, Type I ; A, Type I1 ; + , Type I11 ; x , Type IV, 
and are interpolated by dashed lines. 

a 

A = 0.7 cm. The parameter a = A / h  = 0.28 is only moderately large. Water motion 
was visualized with suspended aluminium flakes, and spanwise periodic streaks in the 
direction parallel to  the oscillation were observed on each cylinder. The positions of 
streaks on one cylinder were shifted from those on adjacent cylinders by half the 
spacing, in a form corresponding rather closely to our mode 3 or 4, Type I 
instability with a = l/n z 0.32 shown in figure 5 ( 9 ) .  In  our theory for small e another 
harmonic instability of Type I11 is equally likely. That the latter was not reported 
is possibly due to  the effects of finite e and the circular cylinder geometry which may 
have caused separation in the basic two-dimensional flow for which our theory is not 
adequate. Corresponding to the frequency f = 0.36 Hz, the Stokes boundary-layer 
thickness is 

6 =  - = - =0.066cm, (3; (2:J 

where v = 0.01 cm2/s, which is the viscosity of water a t  20 "C, is used. In our 
calculation the mode 3 or 4, Type I instability has the largest growth rate around 
k = 0.38 ; the corresponding wavelength of the instability is 

(9.3) 
2x 
k 

6- = 1.1  cm. 

On the other hand, from a photograph in Matsunaga & Honji, the observed 
wavelength of the instability is roughly 1.7 cm, which is not too different from the 
theoretical estimate. The quantitative discrepancy can be partly attributed to the 
difference in geometries. Another possible factor is the water temperature in these 
experiments, which was not reported. The viscosity of pure water increases by 30 % 
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if the temperature is reduced from 20°C to  10°C; the theoretical instability 
wavelength may then increase by 14 YO. 

From our estimate of E ,  the Taylor number in the experiment can be calculated as 

ECZ' 0.14 x 0.28' 
r~ 0.066/2.5 

T = - =  = 0.42, (9.4) 

which is much lower than the theoretical threshold of modes 3 and 4 : T = 0.94. This 
quantitative discrepancy is again likely to be attributable to the significant 
difference in geometries. 

According to figure 4 ( b ) ,  modes 1 and 2 (Types I and 11) have lower thresholds in 
T than modes 3 and 4 and instability should be detected first a t  the troughs and not 
the crests. However, the trough geometry in their experiments is totally different 
from being nearly sinusoidal; it is flat (zero curvature) almost everywhere except for 
the sharp corners where the cylinders intersect the flat bottom. Therefore our 
predictions for modes 1 and 2 cannot be expected to apply. 

Masunaga & Honji performed another experiment with higher frequency 
f = 1.8 Hz and larger amplitude A = 1.5 em. The flow was observed to  be turbulent, 
therefore no comparison with our theory can be made. 

Sleath & Ellis (1978) have investigated the formation of ripples by oscillating a 
sand tray in calm water, with three different particles (medium sand of median 
diameter 0.40 mm and specific gravity 2.65, silt of median diameter 0.124 mm and 
specific gravity 2.65, and Perspex grains of media diameter 0.53 mm and specific 
gravity 1.17). When ripples reached the final equilibrium state, measurements were 
made of the amplitude and the wavelength of the two-dimensional ripples, as well as 
the spacing and the height of the bridges, when they were present, between the 
crests. The ranges of the parameters for which brick-patterned ripples were observed 
are : E = 0.078-0.139, a: = 0.554.88 ,  and CT = 0.01504.049. Among their records we 
have found nine cases (all of them with Perspex grains) with a: in the range of 
0.62-0.66 which is close to our calculations shown in figure 4 ( d )  (a: = 0.64). From 
their data, the values of E ,  T and the observed non-dimensional wavenumber k of the 
three-dimensional bridges are shown in table 2. 

According to figure 4 ( d ) ,  the least stable mode 1 has the threshold Taylor number 
T = 2.06 with k = 0.52 which has only of order-of-magnitude agreement with some 
of the observations. Despite this quantitative discrepancy, we stress that the 
theoretical flow structure of mode 1, shown in figure 5(k), tends to accumulate 
particles to form bridges between the ripple crests, and is consistent qualitatively 
with the observed brick pattern. This suggests, a t  least tentatively, that the 
centrifugal instability can be partially responsible for initiating the brick pattern. To 
achieve a better quantitative agreement, one needs a theory for finite E which 
accounts for vortex shedding in the basic two-dimensional flow and for the particle 
motion. 

10. Conclusions 
We have developed a theory for the three-dimensional instability of centrifugal 

type of a two-dimensional oscillatory flow over periodic ripples. Under weak ambient 
oscillations, the least stable mode occurs along the troughs if the ripple slope is 
sufficiently small. For larger ripple slope, disturbances are first observed along the 
crests. These disturbances are localized along each ripple, and their mechanism is 
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Run no. 

33 
35 
38 
42 
43 
55 
62 
66 
67 

U 

0.623 
0.625 
0.648 
0.641 
0.625 
0.637 
0.649 
0.631 
0.636 

€ 

0.112 
0.104 
0.085 
0.120 
0.100 
0.107 
0.108 
0.118 
0.106 

T 
1.02 
1 . 1 1  
1.14 
1.83 
1.78 
1.68 
1.28 
1.59 
1.63 

k 
0.324 
0.157 
0.195 
0.1 15 
0.074 
0.130 
0.135 
0.109 
0.201 

TABLE 2. Measured parameters for brick-patterned ripples in Sleath & Ellis (1978) 

similar to  that of the spanwise instability along a circular cylinder investigated by 
Hall. 

As the oscillation amplitude increases, the disturbances along adjacent ripples 
begin to interact with each other, showing more complicated flow patterns of either 
harmonic or subharmonic type. The associated steady streaming along the ripple 
surface and its divergence have been calculated. In  some cases the flow patterns 
suggest that centrifugal instability can be relevant to the initiation of brick- 
patterned ripples, although other factors such as flow-particle interaction and vortex 
shedding in the basic flow must be effective for the brick pattern to evolve toward 
final equilibrium. 

For quantitative checks on our theory it is certainly desirable to perform 
controlled experiments with ripples whose shape is close to our theoretical model and 
with visualization techniques that reveal the flows near the entire ripple surface. On 
the other hand, further theoretical studies on the instability of oscillatory flows with 
vortices around steep ripples are worthwhile. 

We thank the US Office of Naval Research, Ocean Engineering Program (Contracts 
NOOO14-83K 0550 and 895 3128) and the National Science Foundation, Programs of 
Fluid Mechanics & Hydraulics and of Ocean Engineering (Grant MSME 8813121) for 
supporting this research. The relevance of centrifugal instability to brick-patterned 
ripples was first brought to our attention by Professor A. Kaneko, Kyushu 
University, in 1986. 

Appendix A. The local radius of curvature of the ripple surface 
At the ripple surface 7 = 0, equation (2.1) becomes 

x = f-asin-, 2x9 y = acos- 2 X E  
h h 

where both x and y are now functions of 6 only. Thus 

*=(-)( dy dx ) -' =(--sinT %a 2n3( 1--cos- 27ca 2 7 7 '  
dx df d5 h h h 
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and 

The local radius of curvature is, by definition, 

A2 [1-4mcos (2nEJ+4n2e2]f 
After normalization, R ,  = ~ 

4n2a [cos (27~5) - 2ne] 

1 4n2a [cos (2x5)  - 2n.5 
A2 3 -- - 

29 

(A 3) 

Appendix B. Numerical procedure for solving the eigenvalue problem 
In  $ 7  we have obtained coupled ordinary differential equations (7.18) and (7.19) 

governing u,, and v,, with boundary conditions (7.20). 
We first seek neutrally stable solutions of eigen functions u,,, wnm and eigenvalue 

T for given k, setting s = 0. The numerical method by Hall (1984), which involves 
only one summation, may be readily extended for two summations. Specifically, for 
r > rM where rM is a large enough value, we can approximate (7.18) and (7.19) by 
neglecting coefficients which decay exponentially, 

(6- k2 - in) ($- k2) v,, 

The solutions of the uncoupled ordinary differential equations (B 1) which satisfy the 
boundary conditions (7.20) a t  7 = co are 

u,, = a,,exp[-(k2+in)~r]. (B 3) 

2-2 
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From (B 2 )  we get for n =I= 0: 

T. Hara and C. C. Mei 

When n = 0, u,, is replaced by 

1 

3 
x -2 exp [ - (k2 - ij); T I +  born e+y + corn 7 e-kg. (B 4 b )  

For brevity, we only show the numerical procedure for Type I. That for the other 
three Types has been carried out similarly. 

We truncate the Fourier series (7 .16)  at  n = +Nand m = +M. In  view of (7 .17)  and 
(7.26) the coefficients a,,, b,,, c,, must satisfy 

In particular for n = 0 

(B 6) - * -  
a$, = a,, -, - -a,,, b,*, = bo,-m = born, 

a,, = a:, + ia;,, b,, = b',, + ib;,, c,, = c:, + ic:,, 

Corn - Co,-m = C o r n ,  

which indicates that  a,, is purely imaginary while born and corn are real. In  setting 

(B 7)  

where a;,, a;,, b',,, b;,, c:,, c;, are real, we may identify the following ;(W+3) 
(M+ 1) independent real coefficients : 

m =  1,3 ,..., M .  (B 8) I a;, n =  l-N 
a:, n =  0-N 

birn ,c i rn  n = 0-N 
b ~ , , c ~ ,  n = l-N 

We now set one of these coefficients to be 1 and all the others to be 0, and calculate 
the values of u,,,v,, and their derivatives a t  7 = rM.  Using these as the initial 
conditions, we integrate the unapproximated equations (7.18) and (7.19) from 7 = 
qjv to 7 = 0 by a fourth-order Runge-Kutta scheme. After repeating this procedure 
for all the coefficients, the solutions of u,, and v,, can be written as the linear 
combination of these +(6N+3) (M+ 1) independent solutions. The coefficients are 
then determined so that the boundary conditions (7.20) are satisfied at 7 = 0, as 
follows. 
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Recall that u,, and v,, satisfy (7.17) and (7.26), i.e. 

(B 9) Un*, = U-,,-, - - ( - l ) n + l U - , , r n ,  v,, * = v-,,-, = ( - l ) n V - , , ,  

In particular, uom is purely imaginary and vOm is real. If we set 

u,, = uim -?- iua,, v,, = %, + iv;,, (B 10) 

where u:,, u im,  v im,  vf, are real, the boundary conditions (7.20) at  7 = 0 yield 

I u;, = O  n =  l-N 

ui,=O n = @ N  

which provides 36N+ 3) (M+ 1) conditivns to determine equal number of real 
coefficients. 

For non-neutral modes, s $: 0, the approximate equations for 7 > vM are modified 
as 

P-in-s u,, = 0 1 a 2  (w- 
($- 

+ b,, e-kv + c, ,  exp [ - ( k2 + in + s)f 71. (B 15) 

By prescribing s and k, the eigenvslue T can be calculated with the eigenfunctions 
u,, and v,, as in the case of neutral instability. 

In  each calculation of the eigenvalue T,  we increased N ,  M and vM and decreased 
AT until the solution converged. The range of values of N and M are shown in table 
3. As 01 increases, more time harmonics (greater N )  are required. On the other hand, 
the number M of the spatial harmonics is greater for smaller 01 since the instability 
is confined in a narrower region around the crest/trough as was already discussed in 
$6. In all the calculations, we used qM = 15.0, Ay = 0.33 or 0.5. With these values, 
the errors of the eigenvalue T are a t  most 0.5 YO. In the calculation of velocity fields, 
it was necessary to include 2 or 3 more spatial harmonics to  obtain 1 YO accuracy. 

Calculations were carried out on the Gray X-MP super computers a t  Pittsburgh 
Supercomputing Center and at  the Naval Research Laboratory in Washington, DC. 
Typical CPU time for one eigenvalue T was 400 s for N = 11, M = 9 or 80 s for N = 
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a N M 

1/2n x 0.16 3-5 10-15 
l/n x 0.32 6-7 8-12 

3/2n x 0.48 7-9 6-12 
2/n x 0.64 10-1 1 6-9 

TABLE 3. Numbers of time ( N )  and space (M)  harmonics 

7,  M = 6. We have also tried to calculate for a = 5/2x M 0.80, but the computation 
was too costly for us to pursue. 
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